Loading

Rocket And Missile System2

Multiple warheads

By the early 1970s, several technologies were maturing that would produce a new wave of ICBMs. First, thermonuclear warheads, much lighter than the earlier atomic devices, had been incorporated into ICBMs by 1970. Second, the ability to launch larger throw weights, achieved especially by the Soviets, allowed designers to contemplate adding multiple warheads to each ballistic missile. Finally, improved and much lighter electronics translated into more accurate guidance.
The first steps toward incorporating these technologies came with multiple warheads, or multiple reentry vehicles (MRVs), and the Fractional Orbital Bombardment System (FOBS). The Soviets introduced both of these capabilities with the SS-9 Scarp, the first “heavy” missile, beginning in 1967. FOBS was based on a low-trajectory launch that would be fired in the opposite direction from the target and would achieve only partial earth orbit. With this method of delivery, it would be quite difficult to determine which target was being threatened. However, given the shallow reentry angles associated with a low trajectory and partial earth orbit, the accuracy of FOBS missiles was questionable. A missile carrying MRVs, on the other hand, would be launched toward the target in a high ballistic trajectory. Several warheads from the same missile would strike the same target, increasing the probability of killing that target, or individual warheads would strike separate targets within a very narrow ballistic “footprint.” (The footprint of a missile is that area which is feasible for targeting, given the characteristics of the reentry vehicle.) The SS-9, model 4, and the SS-11 Sego, model 3, both had three MRVs and ballistic footprints equal to the dimensions of a U.S. Minuteman complex. The only instance in which the United States incorporated MRVs was with the Polaris A-3, which, after deployment in 1964, carried three 200-kiloton warheads a distance of 2,800 miles. In 1967 the British adapted their own warheads to the A-3, and beginning in 1982 they upgraded the system to the A3TK, which contained penetration aids (chaff, decoys, and jammers) designed to foil ballistic missile defenses around Moscow.
Soon after adopting MRVs the United States took the next technological step, introducing multiple independently targetable reentry vehicles (MIRVs). Unlike MRVs, independently targeted RVs could be released to strike widely separated targets, essentially expanding the footprint established by a missile's original ballistic trajectory. This demanded the capacity to maneuver before releasing the warheads, and maneuvering was provided by a structure in the front end of the missile called the “bus,” which contained the RVs. The bus was essentially a final, guided stage of the missile (usually the fourth), that now had to be considered part of the missile's payload. Since any bus capable of maneuvering would take up weight, MIRVed systems would have to carry warheads of lower yield. This in turn meant that the RVs would have to be released on their ballistic paths with great accuracy. As stated above, solid-fueled motors could be neither throttled nor shut down and restarted; for this reason, liquid-fueled buses were developed for making the necessary course corrections. The typical flight profile for a MIRVed ICBM then became approximately 300 seconds of solid-rocket boost and 200 seconds of bus maneuvering to place the warheads on independent ballistic trajectories.
The first MIRVed system was the U.S. Minuteman III. Deployed in 1970, this three-stage, solid-fueled ICBM carried three MIRVs of an estimated 170 to 335 kilotons. The warheads had a range of 8,000 miles with CEPs of 725–925 feet. Beginning in 1970 the United States also MIRVed its SLBM force with the Poseidon C-3, which could deliver up to 14 50-kiloton RVs to a range of 2,800 miles and with a CEP of about 1,450 feet. After 1979 this force was upgraded with the Trident C-4, or Trident I, which could deliver eight 100-kiloton MIRVs with the same accuracy as the Poseidon, but to a distance of 4,600 miles. Much longer range was made possible in the Trident by adding a third stage, by replacing aluminum with lighter graphite epoxies, and by adding an “aerospike” to the nose cone that, extending after launch, produced the streamlining effect of a pointed design while allowing the larger volume of a blunt design. Accuracy was maintained by updating the missile's inertial guidance during bus maneuvering with stellar navigation.
By 1978 the Soviet Union had fielded its first MIRVed SLBM, the SS-N-18 Stingray. This liquid-fueled missile could deliver three or five 500-kiloton warheads to a distance of 4,000 miles, with a CEP of about 3,000 feet. On land in the mid-1970s, the Soviets deployed three MIRVed, liquid-fueled ICBM systems, all with ranges exceeding 6,000 miles and with CEPs of 1,000 to 1,500 feet: the SS-17 Spanker, with four 750-kiloton warheads; the SS-18 Satan, with up to 10 500-kiloton warheads; and the SS-19 Stiletto, with six 550-kiloton warheads. Each of these Soviet systems had several versions that traded multiple warheads for higher yield. For instance, the SS-18, model 3, carried a single 20-megaton warhead. This giant missile, which replaced the SS-9 in the latter's silos, had about the same dimensions as the Titan II, but its throw weight of more than 16,000 pounds was twice that of the U.S. system.
Beginning in 1985, France upgraded its SLBM force with the M-4, a three-stage MIRVed missile capable of carrying six 150-kiloton warheads to ranges of 3,600 miles.
A second generation of MIRVed U.S. systems was represented by the Peacekeeper. Known as the MX during its 15-year development phase before entering service in 1986, this three-stage ICBM carried 10 300-kiloton warheads and had a range of 7,000 miles. Originally designed to be based on mobile railroad or wheeled launchers, the Peacekeeper was eventually housed in Minuteman silos. A second-generation MIRVed SLBM of the 1990s was the Trident D-5, or Trident II. Even though it was one-third again as long as its predecessor and had twice the throw weight, the D-5 could deliver 10 475-kiloton warheads to a range of 7,000 miles. Both the Trident D-5 and Peacekeeper represented a radical advance in accuracy, having CEPs of only 400 feet. The improved accuracy of the Peacekeeper was due to a refinement in the inertial guidance system, which housed the gyros and accelerometers in a floating-ball device, and to the use of an exterior celestial navigation system that updated the missile's position by reference to stars or satellites. The Trident D-5 also contained a star sensor and satellite navigator. This gave it several times the accuracy of the C-4 at more than twice the range.
Within the generally less-advanced guidance technology of the Soviet Union, an equally radical advance came with the solid-fueled SS-24 Scalpel and SS-25 Sickle ICBMs, deployed in 1987 and 1985, respectively. The SS-24 could carry eight or 10 MIRVed warheads of 100 kilotons, and the SS-25 was fitted with a single 550-kiloton RV. Both missiles had a CEP of 650 feet. In addition to their accuracy, these ICBMs represented a new generation in basing mode. The SS-24 was launched from railroad cars, while the SS-25 was carried on wheeled launchers that shuttled between concealed launch sites. As mobile-based systems, they were long-range descendants of the SS-20 Saber, an IRBM carried on mobile launchers that entered service in 1977, partly along the border with China and partly facing western Europe. That two-stage, solid-fueled missile could deliver three 150-kiloton warheads a distance of 3,000 miles with a CEP of 1,300 feet. It was phased out after the signing of the Intermediate-Range Nuclear Forces (INF) Treaty in 1987.

Rocket And Missile System

From liquid to solid fuel


This first generation of missiles was typified by its liquid fuel, which required both a propellant and an oxidizer for ignition as well as a complex (and heavy) system of pumps. The early liquid fuels were quite dangerous, difficult to store, and time-consuming to load. For example, Atlas and Titan used so-called cryogenic (Hypercold) fuels that had to be stored and handled at very low temperatures (−422° F [−252° C] for liquid hydrogen). These propellants had to be stored outside the rocket and pumped aboard just before launch, consuming more than an hour.

As each superpower produced, or was thought to produce, more ICBMs, military commanders became concerned about the relatively slow reaction times of their own ICBMs. The first step toward “rapid reaction” was the rapid loading of liquid fuels. Using improved pumps, the reaction time of the Titan I was reduced from over one hour to less than 20 minutes. Then, with a second generation of storable liquids that could be kept loaded in the missile, reaction time was reduced to approximately one minute. Examples of second-generation storable-liquid missiles were the Soviet SS-7 Saddler and SS-8 Sasin (the latter deployed in 1963) and the U.S. Titan II. The Titan II was the largest ballistic missile ever developed by the United States. This two-stage ICBM was more than 100 feet long and 10 feet in diameter. Weighing more than 325,000 pounds at launch, it delivered its single warhead (with a throw weight of about 8,000 pounds) to a range of 9,000 miles and with a CEP of about one mile.

In about 1964 China began developing a series of liquid-fueled IRBMs given the NATO designation CSS, for Chinese surface-to-surface missile. (The Chinese named the series Dong Feng, meaning “East Wind.”) The CSS-1 carried a 20-kiloton warhead to a range of 600 miles. The CSS-2, entering service in 1970, was fueled by storable liquids; it had a range of 1,500 miles and carried a one- to two-megaton warhead. With the two-stage CSS-3 (active from 1978) and the CSS-4 (active from 1980), the Chinese reached ICBM ranges of over 4,000 and 7,000 miles, respectively. The CSS-4 carried a warhead of four to five megatons.

Because storable liquids did not alleviate the dangers inherent in liquid fuels, and because the flight times of missiles flying between the United States and the Soviet Union shrank to less than 35 minutes from launch to impact, still faster reactions were sought with even safer fuels. This led to a third generation of missiles, powered by solid propellants. Solid propellants were, eventually, easier to make, safer to store, lighter in weight (because they did not require on-board pumps), and more reliable than their liquid predecessors. Here the oxidizer and propellant were mixed into a canister and kept loaded aboard the missile, so that reaction times were reduced to seconds. However, solid fuels were not without their complications. First, while it was possible with liquid fuels to adjust in flight the amount of thrust provided by the engine, rocket engines using solid fuel could not be throttled. Also, some early solid fuels had uneven ignition, producing surges or abrupt velocity changes that could disrupt or severely confound guidance systems.

The first solid-fueled U.S. system was the Minuteman I. This ICBM, conceived originally as a rail-mobile system, was deployed in silos in 1962, became operational the following year, and was phased out by 1973. The first Soviet solid-fueled ICBM was the SS-13 Savage, which became operational in 1969. This missile could carry a 750-kiloton warhead more than 5,000 miles. Because the Soviet Union deployed several other liquid-fueled ICBMs between 1962 and 1969, Western specialists speculated that the Soviets experienced engineering difficulties in producing solid propellants.

The French deployed the first of their solid-fueled S-2 missiles in 1971. These two-stage IRBMs carried a 150-kiloton warhead and had a range of 1,800 miles. The S-3, deployed in 1980, could carry a one-megaton warhead to a range of 2,100 miles.
The first SLBMs

Simultaneous with the early Soviet and U.S. efforts to produce land-based ICBMs, both countries were developing SLBMs. In 1955 the Soviets launched the first SLBM, the one- to two-megaton SS-N-4 Sark. This missile, deployed in 1958 aboard diesel-electric submarines and later aboard nuclear-powered vessels, had to be launched from the surface and had a range of only 350 miles. Partly in response to this deployment, the United States gave priority to its Polaris program, which became operational in 1960. Each Polaris A-1 carried a warhead of one megaton and had a range of 1,400 miles. The Polaris A-2, deployed in 1962, had a range of 1,700 miles and also carried a one-megaton warhead. The U.S. systems were solid-fueled, whereas the Soviets initially used storable liquids. The first Soviet solid-fueled SLBM was the SS-N-17 Snipe, deployed in 1978 with a range of 2,400 miles and a 500-kiloton warhead.

Beginning in 1971, France deployed a series of solid-fueled SLBMs comprising the M-1, M-2 (1974), and M-20 (1977). The M-20, with a range of 1,800 miles, carried a one-megaton warhead. In the 1980s the Chinese fielded the two-stage, solid-fueled CSS-N-3 SLBM, which had a range of 1,700 miles and carried a two-megaton warhead.

Facebook Badge

 
Design by Cybermoshfiq | Bloggerized by Moshfiqur's Rahman - .